Квазары


Квазар — особо мощное и далёкое активное ядро галактики. Английский термин quasar образован от слов quasistellar («квазизвёздный» или «похожий на звезду») и radiosource («радиоисточник») и дословно означает «квазизвёздный радиоисточник». Квазары являются одними из самых ярких объектов во Вселенной — их мощность излучения иногда в десятки и сотни раз превышает суммарную мощность всех звёзд таких галактик, как наша. Следы родительских галактик вокруг квазаров (причём, далеко не всех) были обнаружены лишь позднее. В первую очередь квазары были опознаны как объекты с большим красным смещением, имеющие электромагнитное излучение (включая радиоволны и видимый свет) и настолько малые угловые размеры, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд (напротив, протяжённые источники больше соответствуют галактикам). По своим свойствам эти псевдозвездные радиоисточники похожи на активные ядра галактик. Многие астрофизики считают, что светимость этих объектов поддерживается не термоядерным путем. Энергия квазаров – это гравитационная энергия, которая выделяется за счет катастрофического сжатия, происходящего в ядре галактики.

Кроме современного определения, существовало ещё и первоначальное: «Квазар — класс небесных объектов, которые в оптическом диапазоне похожи на звезду, но имеющие сильное радиоизлучение и чрезвычайно малые угловые размеры (меньше 10″)».
Первоначальное определение сложилось в конце 1950-х, начале 1960-х, когда были открыты первые квазары и их изучение только началось. И в этом определении нет ничего неправильного, за исключением следующего факта. Как оказалось, по состоянию на 2004 год мощное радиоизлучение имеют максимум 10 % квазаров. А остальные 90 % не излучают сильных радиоволн. Такие объекты астрономы называют радиоспокойными квазарами.

Что такое квазары

Наибольшей популярностью на сегодняшний день пользуется гипотеза, согласно которой квазар является огромнейшей черной дырой, которая втягивает в себя окружающее пространство. По мере приближения к черной дыре, частицы разгоняются, сталкиваются между собой – и это приводит к мощнейшему радиоизлучению. Если у черной дыры есть и магнитное поле, то оно к тому же собирает частицы в пучки – так называемые джеты – которые разлетаются от полюсов. Другими словами, то сияние, которое наблюдают астрономы – это все, что остается от галактики, погибшей в черной дыре. По другим версиям, квазары – это молодые галактики, процесс появления на свет которых мы наблюдаем. Некоторые из ученых предполагают, что, да, квазар – это молодая галактика, но которую пожирает черная дыра.

Предполагаемое изображение квазара
Предполагаемое изображение квазара (European Southern Observatory)

Как бы там ни было, астрофизики очень тесно связывают существование квазаров и судьбу галактик.
Первый квазар, 3C 48, был обнаружен в конце 1950-х Аланом Сендиджем и Томасом Метьюзом во время радиообзора неба. В 1963 году было известно уже 5 квазаров. В том же году голландский астроном Мартин Шмидт доказал, что линии в спектрах квазаров сильно смещены в красную сторону. Принимая, что это красное смещение вызвано эффектом космологического красного смещения, возникшего в результате удаления квазаров, расстояние до них определили по закону Хаббла. В последнее время принято полагать, что источником излучения является аккреционный диск сверхмассивной чёрной дыры, находящейся в центре галактики, и, следовательно красное смещение квазаров больше космологического на величину гравитационного смещения, предсказанного А. Эйнштейном в общей теории относительности.
Очень сложно определить точное число обнаруженных на сегодняшний день квазаров. Это объясняется, с одной стороны, постоянным открытием новых квазаров, а с другой — отсутствием четкой границы между квазарами и другими типами активных галактик. В опубликованном в 1987 году списке Хьюитта — Бэрбриджа число квазаров 3594. В 2005 году группа астрономов использовала в своём исследовании данные уже о 195 000 квазаров.
Один из ближайших и наиболее яркий квазар 3C 273 имеет красное смещение z = 0,158 (что соответствует расстоянию около 3 млрд св. лет). Самые далёкие квазары, благодаря своей гигантской светимости, превосходящей в сотни раз светимость обычных галактик, регистрируются с помощью радиотелескопов на расстоянии более 12 млрд св. лет. На июль 2011 года самый удалённый квазар (ULAS J112001.48+064124.3) находится на расстоянии около 13 млрд св. лет от Земли. Нерегулярная переменность блеска квазаров на временных масштабах менее суток указывает на то, что область генерации их излучения имеет малый размер, сравнимый с размером Солнечной системы.
В 1982 году австралийскими астрономами был открыт новый квазар, получивший название PKS 200-330, у которого обнаружилось рекордное для того времени красное смещение Z==3,78. Это означает, что спектральные линии отдаляющегося от нас астрономического объекта в результате эффекта Доплера имеют длину волны, в 3,78 раза превышающую значение неподвижного источника светоизлучения. Расстояние до этого квазара, видимого в оптический телескоп как звезда девятнадцатой величины, составляет 12,8 млрд световых лет..

Во второй половине 80-х годов было зафиксировано еще несколько наиболее отдаленных квазаров, величина красного смещения которых уже превышает 4,0. Таким образом, радиосигналы, посланные этими квазарами тогда, когда еще не была сформирована наша Галактика, в том числе Солнечная система, можно только сегодня зарегистрировать на земле. А преодолевают эти лучи огромное расстояние-более 13 млрд световых лет. Эти следующие друг за другом астрономические открытия были сделаны в ходе конкурентной научной гонки австралийских астрономов из обсерватории Сайдинг-Спринг и их американских коллег из обсерватории Маунт-Паломар в Калифор-нии. Сегодня самый удаленный от нас объект - квазар PC 1158+4635 с красным смещением, равным 4,733. Расстояние до него составляет 13,2 млрд световых лет..

Но вот в той же обсерватории Маунт-Паломар посредством 5-метрового телескопа американские звездные исследователи во главе с отважным охотником за квазарами М. Шмидтом в сентябре 1991 года окончательно подтвердили слухи о существовании более далекого от нас астрономического объекта. Величина красного смещения рекордно далекого квазара под номером PC 1247+3406 составляет 4,897. Кажется, дальше уже некуда. Излучение этого квазара доходит до нашей планеты за время, почти равное возрасту Вселенной.
Последние наблюдения показали, что большинство квазаров находятся вблизи центров огромных эллиптических галактик.
Квазары сравнивают с маяками Вселенной. Они видны с огромных расстояний, по ним исследуют структуру и эволюцию Вселенной, определяют распределение вещества на луче зрения: сильные спектральные линии поглощения водорода разворачиваются в лес линий по красному смещению поглощающих облаков. Один квазар светится сильнее, чем вся наша Галактика, примерно в 10000 раз. Энергии среднего, ничем не примечательного, квазара хватило бы на то, чтобы снабжать всю Землю электроэнергией в течение нескольких миллиардов лет. А некоторые из квазаров излучают энергии в 60 тыс. раз больше.
Болометрическая (интегральная по всему спектру) светимость квазаров может достигать 1046 — 1047 эрг/с. В среднем квазар производит примерно в 10 триллионов раз больше энергии в секунду, чем наше Солнце (и в миллион раз больше энергии, чем самая мощная известная звезда), и обладает переменностью излучения во всех диапазонах длин волн.

Многие квазары меняют свою светимость в коротких промежутках времени. Это является, по-видимому, одним из фундаментальных свойств квазаров (кратчайшая вариация с периодом t " 1 ч, максимальные изменения блеска — в 25 раз). Поскольку размеры переменного по блеску объекта не могут превышать сt (с — скорость света), размеры квазаров не могут быть более 4 000 000 000 000 м (меньше диаметра орбиты Урана), и только при движении вещества со скоростью, близкой к скорости света, эти размеры могут быть больше.

Иной взгляд на квазары

Отрывок из статьи Карима Хайдарова 2005 г.

Миф о сверхдалеких и сказочно больших квазарах

Приписывая красному смещению квазаров Хаббловскую природу, то есть считая, что расстояние до них пропорционально их красному смещению, релятивистская физика считает квазары запредельно далекими и сказочно великими небесными телами. На этих предположениях построено немало смехотворных космогонических теорий. Их возникновение связано с путаницей в головах космологов. Они считают красное смещение одним физическим явлением, хотя, на самом деле в Природе существует как минимум 4 вида причин красного смещения:

  • доплеровское смещение, вызванное разницей скоростей источника и приемника;
  • хаббловское смещение, вызванное диссипацией энергии света на космогонических расстояниях ("старение света");
  • трамплеровское красное мещение, связанное с большой светимостью звезд;
  • гравитационное смещение, вызванное разницей гравитационных потенциалов точки излучения и точки приема.

Вопреки релятивистским мифам, уже много лет первооткрыватель и исследователь квазаров д-р Хальтон Арп показывает, что квазары физически, наблюдаемо ассоциированы с некоторыми известными и не столь уж далекими галактиками. Им накоплен большой статистический материал наблюдений, то есть астрономических фактов, который при честном отношении к науке просто невозможно игнорировать [1-19].

Согласно Х. Арпу квазары имеют “внутреннее” или “собственное” красное смещение, которое не зависит от расстояния на котором они находятся от нас. Внутреннее красное смещение квазаров определяется канонической формулой (см., например, [18-19])

Zi = (Zv +1)/(Zg + 1) - 1

(2)

где Zi – внутреннее красное смещение квазара, Zv – видимое с Земли красное смещение квазара, Zg – красное смещение галактики, в которой находится квазар.

Кроме того, исследованиями Д. С. МакМиллана [26] показано, что по данным геодезических сессий VLBI за 1979 - 2003 гг. у большого числа квазаров есть значимые ненулевые собственные движения: у 580 источников точности определения собственных движений составляют 0.5 mas/год и лучше, а для 50-60 объектов их собственные движения отличаются от нуля более, чем на 3σ. Таким образом, необходимо принять либо сверхсветовые скорости движения квазаров, либо считать, что их красное смещение не имеет отношения к расстояниям до них.

Квазары действительно яркие, но отнюдь не сказочно большие небесные тела. Согласно данным радиоинтерферометрии они являются точечными источниками, имеющими размер менее 0,4 mas.

В познании их природы может помочь явление квантованности их красных смещений, открытое К. Карлссоном и подробно исследованное Х.Арпом и Дж. и Е.М. Бёрбиджами.

Квантованность красных смещений квазаров

В 1971 году К. Карлссон [20], исследуя статистику красных смещений квазаров, обнаружил, что она носит явно кластерный характер с практически равными шагами по частоте.

Статистическим анализом Х. Арп обнаружил, что если квазары ассоциировать с галактиками, находящимися на малых угловых расстояниях от квазаров, то квантованность статистики красных смещений квазаров обостряется.

Продолжая эти исследования, тщательно учитывая все сопутствующие признаки близко расположенных по углу квазаров и галактик, Х. Арп пришел к выводу, что эти объекты имеют не только близкое угловое расположение, но и близки линейно, физически. Было наблюдено множество случаев соединения галактик и квазаров радиоизлучающими мостами, видимыми звездно-пылевыми рукавами.

Применяя формулу (2) к выделению “внутренней” компоненты красного смещения квазаров, не зависящей от расстояния, Х. Арп получил еще более четкое квантованное распределение красных смещений квазаров. Оказалось, что красные смещения принимают только фиксированные значения из ряда [18]:

Z = 0.061; 0,30; 0,60; 0.96, 1.41; 1.96; 2.63 …

В математически удобной форме эту последовательность можно записать так:

Z = exp((n + a)/b) - 1; a = 0,285; b = 4.874

(3)

где n = 0, 1, 2, 3 … - натуральный ряд чисел, реально номер типа квазара.

Найденное n явно относится к ряду каких-то однородных физических состояний квазаров.

По мнению автора внутреннее красное смещение квазаров есть гравитационное смещение (1), и квантовой формуле (3) можно приписать соответствующее значение гравитационного потенциала поверхности излучения квазара

(4)

где M – масса квазара, R – радиус фотосферы квазара.

Температура квазаров

Считая, что поверхность квазара есть самый обыкновенный ионизированный газ, зная гравитационный потенциал излучающей поверхности (4), можно определить температуру поверхности квазара из условия равенства средней скорости самой легкой частицы фотосферы – электрона и орбитальной скорости на среднем уровне фотосферы.

Для этого достаточно принять, что наиболее вероятная скорость самых легких частиц верхнего слоя, т.е. электронов, равна орбитальной скорости для данной высоты (радиуса R), а распределение электронов подчиняется статистике Максвелла (1), то есть

v1 = ( γM/R)0.5 = (2kTe/me)0,5 [m/s] ,

где γ – гравитационная постоянная.

Отсюда получаем выражение для температуры электронов поверхности газового шара [41]

Te = γMme / 2kR [oK],

(5)

Эта температура есть цветовая температура газового шара, которая немного отличается от эффективной температуры смещением спектра излучения в высокочастотную область за счет термоэмиссии электронов за пределы шара. Для обычных звезд температура (5) мало отличается от эффективной температуры поверхности излучающего шара и это отличие можно учесть введя цветовую поправку равную, например, для Солнца ct = 1,093. Однако для квазаров, судя по их спектру такая поправка будет большой. Приближенное значение, полученное автором ctQSO = 2.

Кроме этой поправки в связи с большим гравитационным красным смещением квазара необходимо ввести поправку Kred в закон излучения. Небо квазара не является черным.

Из формул (4) и (5) с поправками можно получить температуру для каждого типа квазаров

(6)

где Kred – поправка к закону излучения; me – масса электрона; c – скорость света; k – постоянная Больцмана; Ct – цветовая поправка.

Рассчитанные по формуле (6) значения температур квазаров приведены в таблице 1.

Таблица 1. Характеристические температуры излучения квазаров.

тип (n)

Zi

Temiss

Tem.corr

φ/c2

Kred

0

0,060

8,42E+07

7,94E+07

0,057

1,000

1

0,302

3,44E+08

1,85E+08

0,232

0,700

2

0,598

5,55E+08

1,74E+08

0,374

0,500

3

0,962

7,27E+08

1,11E+08

0,490

0,300

4

1,409

8,67E+08

8,28E+07

0,585

0,230

5

1,958

9,81E+08

7,13E+07

0,662

0,215

6

2,632

1,07E+09

5,92E+07

0,725

0,200

Таким образом мы пришли к очень важному выводу, что квазары имеют квантованные, фиксированные температуры поверхности излучения. Кроме того, разделив (4) на радиус излучения можно получить значение силы тяжести на поверхности квазара

(7)

Так как в правой части выражения (7) для фиксированного типа квазара переменной является только R, то из этого можно сделать важный вывод о поведении массы квазара как гуковского упругого тела.

Экспериментальное подтверждение верности теории см. в PDF-документе

Что бы лучше представить себе внешний вид и мощность квазара посмотрите небольшой фрагмент видео про него:



Реклама