Спектр звёзд


«Спектры звезд - это их паспорта с описанием всех их физических свойств. По спектру звезды можно узнать ее светимость (а значит, и расстояние до нее), ее температуру, размер, химический состав ее атмосферы, как качественный, так и количественный, скорость ее движения в пространстве, скорость ее вращения вокруг оси и даже то, нет ли вблизи нее другой, невидимой звезды, вместе с которой она обращается вокруг их общего центра тяжести. Существует детально разработанная классификация звездных классов (гарвардская). В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв. Подклассы обозначены цифрами от 0 до 9 после буквы, обозначающей класс. Спектры большинства звезд характеризуются наличием линий поглощения (см. приложение в формате doc).
Как известно, нагреваемый металл сначала начинает светиться красным светом, потом желтым и, наконец, белым при увеличении температуры. Также и со звездами. В спектрах наиболее горячих, голубоватых звезд с температурами около 30 000° видны линии нейтрального и ионизированного гелия. Температуры большинства звезд заключены в пределах от 3000 до 30 000°. У немногих звезд встречаются температуры около 100 000°.
Класс О. О высокой температуре звезд этого класса можно судить по большой интенсивности ультрафиолетовой области непрерывного спектра, вследствие чего свет этих звезд кажется голубоватым. Наиболее интенсивны линии ионизованного гелия и многократно ионизованных некоторых других элементов (углерода, кремния, азота, кислорода). Наблюдаются слабые линии нейтрального гелия и водорода.
Класс В. Линии нейтрального гелия достигают наибольшей интенсивности. Хорошо видны линии водорода и некоторых ионизованных элементов. Цвет голубовато-белый. Типичная звезда - a Девы (Спика).
Класс А. Линии водорода достигают наибольшей интенсивности. Хорошо видны линии ионизованного кальция, наблюдаются слабые линии других металлов. Цвет звезд белый. В спектрах белых звезд типа A0, как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000°.
Класс F. Линии водорода становятся слабее. Усиливаются линии ионизованных металлов (особенно кальция, железа, титана). Цвет слегка желтоватый. Типичная звезда - a Малого Пса (Процион).
Класс G. Водородные линии не выделяются среди многочисленных линий металлов. Очень интенсивны линии ионизованного кальция. Цвет звезды желтый. В спектрах желтых звезд типа G0, к которым относится и Солнце (с температурой 6000° на поверхности), преобладают тонкие линии нейтральных металлов — железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.
Класс К. Линии водорода не заметны среди очень интенсивных линий металлов. Фиолетовый конец непрерывного спектра заметно ослаблен, что свидетельствует о сильном уменьшении температуры по сравнению с ранними классами (О, В, А). Цвет звезды красноватый, как, например, у a Волопаса (Арктур) и a Тельца (Альдебаран).
Класс М. Красные звезды. Линии металлов ослабевают. Спектр пересечен полосами поглощения молекул окиси титана и других молекулярных соединений. Типичная звезда - a Ориона (Бетельгейзе).
Кроме этих основных классов существуют дополнительные, являющиеся ответвлениями от классов G и К и представляющие собой звезды с аномальным химическим составом, отличающимся от химического состава большинства других звезд. Первое ответвление происходит от класса G и содержит "углеродные" звезды:
Класс С, отличающийся от классов К и М наличием линий поглощения атомов и полос поглощения молекул углерода.
Второе ответвление происходит от класса К и содержит "циркониевые" звезды:
Класс S. Звезды этого класса отличаются от звезд класса М тем, что вместо полос окиси титана TiO присутствуют полосы окиси циркония (ZrO). Таким образом, все перечисленные спектральные классы схематически можно расположить следующим образом:

C
|
O-B-A-F-G-K-M.
|
S

Рассмотренная выше классификация одномерная, так как основной характеристикой является температура звезды. Но среди звезд одного класса есть звезды-гиганты и звезды-карлики. Они отличаются по плотности газа в атмосфере, площади поверхности, светимости. Эти различия отражаются на спектрах звезд. Существует новая, двумерная классификация звезд. По этой классификации у каждой звезды кроме спектрального класса указывается еще класс светимости. Он обозначается римскими цифрами от I до V. I - сверхгиганты, II-III - гиганты, IV - субгиганты, V - карлики. Например, спектральный класс звезды Веги выглядит как А0V, Бетельгейзе - М2I, Сириуса - А1V
Характерной особенностью звездных спектров является еще наличие у них
огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд».

Зависимость размеров, массы, светимости

Наука располагает сейчас несколькими способами определения размеров звезд. Одни из них мы поясним на таком примере. Известно, что количество энергии, испускаемое квадратным сантиметром поверхности, растет с ее температурой. Полное излучение звезды разно количеству энергии, излучаемой одним квадратным сантиметром поверхности, умноженному на величину ее поверхности. Поэтому если какая-нибудь звезда имеет ту же температуру и светимость, как наше Солнце, то мы можем утверждать, что и размер поверхности (а следовательно, и диаметр) у звезды тот же, что и у Солнца.

Если при той же температуре, что у Солнца, светимость звезды в 16 раз больше, значит, ее поверхность в 16 раз, а диаметр в 4 раза больше, чем у Солнца. Подобным же образом можно определить диаметры других звезд, вводя поправку на отличие их температуры от температуры Солнца. Полученные результаты проверяются другими способами и согласуются друг с другом.
Звездами-гигантами называются звезды большой светимости, а звездами-карликами - звезды малой светимости.

К красным звездам-гигантам принадлежат Бетельгейзе и Антарес. Диаметр первой из них примерно в 400, а второй в 300 раз больше диаметра Солнца. Внутри звезды Бетельгейзе могли бы уместиться орбиты всех планет солнечной системы до Марса включительно. Газ, из которого состоят красные звезды-гиганты, очень разрежен; его плотность в тысячи раз меньше плотности комнатного воздуха.
Красные звезды-карлики глазом не видны. Одна из них, очень близкая к нам звезда (№ 60 по каталогу Крюгера), в 2,5 раза меньше Солнца по диаметру. Газы, из которых она состоит, сжаты так сильно, что их средняя плотность в 4,5 раза больше плотности воды и втрое больше плотности Солнца.

Чем меньше размеры звезд, тем в большем числе они встречаются в мировом пространстве; огромные же красные звезды-гиганты попадаются очень редко. По своим размерам Солнце является рядовой звездой, не особенно большой, но и не очень маленькой.
Существуют звезды, которые по светимости принадлежат к звездам-карликам, имеют белый цвет и высокую температуру. По размерам белые звезды-карлики являются наименьшими из звезд (иногда даже меньше Земли). Примером белого карлика является спутник Сириуса. Эта слабая звезда обращается около Сириуса подобно планете, однако ее масса почти равна массе Солнца, и она (звезда) излучает собственный свет.

Средняя плотность белых звезд-карликов необычно высока: она в тысячи раз превосходит плотность воды. Плотность одной белой звезды-карлика так велика, что, если бы ее веществом наполнить наперсток, он смог бы уравновесить паровоз (плотность 5*107 г/см3).

На Земле мы не знаем веществ, которые имели бы такую чудовищную плотность. Между тем белые карлики состоят из атомов тех же самых химических элементов, что и Земля. Решить эту загадку можно, исходя из строения атомов вещества и физических условий внутри звезд.

Атомы химических элементов - сложные системы, состоящие из ядер с обращающимися вокруг них электронами. Почти вся масса атома сосредоточена в его ядре, а размер атома определяется размерами орбиты электрона, наиболее далекого от ядра. Эти размеры атомов определяют предел, до которого могут быть сближены атомы действием давления. В недрах белых звезд-карликов господствуют чудовищно высокие температуры и давления. Под действием высокой температуры быстро носящиеся атомы сталкиваются, электроны отрываются от своих атомов, и от последних остаются только их ядра, размеры которых очень малы по сравнению с размерами орбит электронов. Поэтому под действием огромных давлений уменьшенные в размерах атомы могут быть сближены гораздо сильнее, в результате чего получается чрезвычайно плотное вещество. На Земле нет ни столь высоких температур, - ни столь высоких давлений, которые могли бы привести вещество в такое состояние. Большинство звезд подчиняется важной закономерности - чем больше их масса, тем больше и их светимость. Эта связь отражает физические условия, при которых могут устойчиво существовать звезды.

Массы звезд-гигантов больше, чем массы звезд-карликов, но различия эти не так велики, как различия в светимости. Массы тяжелых звезд раз в 10 больше массы Солнца. Крайне редки звезды с массами в несколько десятков масс Солнца. Следовательно, по своей массе Солнце тоже является средней звездой.



Реклама