Астеносфера состав и строение


 

 

Земная кора и мантия это понятия геологические, вещественные; возникла, однако, необходимость выделения наряду с ними в верхней части твердой Земли, тектоносфере оболочек по их физическому, точнее реологическому состоянию. Такими оболочками являются литосфера и подстилающая ее астеносфера.

Литосфера, первоначально отождествлявшаяся с корой, на большей части Земли охватывает кору и верхнюю часть мантии. Она отличается упругими свойствами в верхней части и упруго-пластичными (вязкими) - в нижней. Это относительно хрупкая оболочка - в ней развиваются и сохраняются разрывы, к ней в основном приурочены очаги землетрясений. Но выделение литосферы имеет смысл лишь при ее противопоставлении астеносфере.

Астеносфера более пластичная, т. е. менее вязкая, оболочка Земли была первоначально выделена, вернее, предсказана, Дж. Баррелом (1916 г.) как оболочка, по отношению к которой осуществляется изостатическая компенсация. Понятие об изостазии, равновесном состоянии коры относительно мантии, возникло в середине XIX в., когда было обнаружено, что горные сооружения не создают, вопреки ожиданию, избыточного притяжения. Это заставило предположить (гипотеза Дж. Эри), что горы обладают корнями, погруженными в мантию. Денудация гор должна вести к поднятиям, возникновение дополнительной нагрузки на кору (ледники, вулканиты, осадки) - к прогибанию. Но этот процесс изостатического выравнивания осуществим лишь в том случае, если кора подстилается оболочкой, по своим свойствам близкой к жидкости, способной к перетеканию. Ею и могла быть астеносфера. Существование астеносферы было подтверждено лишь много позже, в 50-е годы (Б. Гутенберг), когда было обнаружено, что на некоторой глубине уже внутри мантии происходит либо замедление, либо даже снижение скорости прохождения сейсмических волн, вопреки нарастанию давления. Объясняется это влиянием еще более значительного нарастания температуры, благодаря которому некоторая часть вещества мантии (~1 %) переходит в расплавленное состояние (твердые зерна в жидкой пленке или капле жидкости).

В первое время после установления существования астеносферы представлялось, что ее свойства мало изменяются по латерали, а глубина залегания довольно постоянна - 50-60 км под океанами, 100-200 км под континентами. В дальнейшем оказалось, что действительная картина много сложнее. Выяснилось, что под рифтовыми зонами срединноокеанских хребтов кровля астеносферы местами залегает на глубине всего 2-3 км от поверхности дна, в частности под Восточно-Тихоокеанским поднятием. На периферии океанов глубина залегания астеносферы возрастает до 80-100 км, а под континентами она залегает еще глубже и в их центральных частях, под платформами и особенно щитами, она не «прощупывается» до глубин 150-200 км (рис. 1).

Кроме сейсмологического метода обнаружения астеносферы - по уменьшению или хотя бы прекращению увеличения скорости распространения сейсмических колебаний с глубиной, стал использоваться предложенный А. Н. Тихоновым метод магнитотеллурического зондирования, в котором показателем существования астеносферы служит возрастание электропроводности, также связанное, очевидно, с переходом части мантийного материала в расплавленное состояние. Более косвенным сейсмологическим показателем достижения астеносферы служит предельная глубина распространения очагов землетрясения.

Установлено, что в пределах сводовых частей молодых горных сооружений кровля астеносферы поднимается до глубин 20-25 км от поверхности. Это означает, что здесь, как и в осевых зонах срединноокеанских хребтов, кровля астеносферы пересекает границу кора - мантия и, таким образом, в этих высокоподвижных зонах объем литосферы оказывается меньше объема земной коры, в то время как в спокойных районах, занимающих преобладающую часть земной поверхности, литосфера охватывает не только кору, но и существенную часть мантии. Зоны резкого уменьшения мощности литосферы за счет подъема поверхности астеносферы совпадают с зонами антиизостатических восходящих движений, т. е. движений, направленных на дальнейшее нарушение, а не восстановление изостатического равновесия.

Мощность
Литосферы (в км). По А. В. Балли (1979 г.)
Рис.1. Мощность Литосферы (в км). По А. В. Балли (1979 г.)

То обстоятельство, что в центральных частях континентальных платформ астеносфера не обнаруживается до глубины 200-250 км, породило сомнение в непрерывности ее распространения, т. е. в том, что она может рассматриваться как сплошная оболочка Земли. Некоторые геофизики считают, что правильнее говорить не об астеносфере, а об отдельных астенолинзах, выклинивающихся по простиранию. Этот вывод имел бы большое значение (негативное) по отношению к возможности крупных горизонтальных смещений континентальных блоков литосферы по поверхности астеносферы. Однако он вызывает серьезные сомнения. Астеносфера должна существовать везде, где осуществляется изостатическое равновесие, т. е. отсутствуют изостатические аномалии, в особенности под континентальными и океанскими платформами, включая, естественно, кристаллические щиты. Подтверждением этого служит факт изостатической уравновешенности ледниковых щитов Антарктиды и Гренландии благодаря прогибанию земной коры под ними, а также быстрого подъема (всплывания) Балтийского и Канадского щитов после снятия ледовой нагрузки. Причина кажущегося отсутствия астеносферы под щитами заключается, очевидно, во-первых, в ее залегании местами глубже 200-250 км и, во-вторых, в увеличении здесь ее вязкости против характерной для океанов и орогенов и, следовательно, большей трудности обнаружения существующими методами. Как считает Е. В. Артюшков, вязкость астеносферы может изменяться в пределах 1016-1019 Па·с, т. е. на целых три порядка.

Вязкость, глубина залегания и мощность астеносферы это в основном функция величины теплового потока. Чем больше глубина залегания астеносферы, тем больше мощность литосферы (см. рис. 1). На участках, где геофизическими методами установлено особенно высокое залегание астеносферы, в действительности, возможно, имеет место появление над ее основной поверхностью отдельных астенолинз. Существование таких астенолинз доказано в коре ряда горных сооружений по присутствию волноводов, наиболее частому в подошве гранитно-гнейсового слоя коры.

Подошва астеносферы, возможно состоящей из отдельных слоев, может опускаться до глубин порядка 400 км, т. е. до границы собственно верхней мантии и слоя Голицына, иногда называемого мезосферой.

Астеносфера (состав, строение, признаки выделения, условия формирования, роль в геологических процессах)

В соответствии с моделью строения мантии предложенной Ю. М. Пущаровским, в ней, как уже указывалось, выделяется не три, а шесть подразделений: верхняя мантия, состоящая из верхней и нижней частей, зона раздела 1, средняя мантия, зона раздела II и нижняя мантия. Меняются и границы, определяющие кровлю и подошву выделенных оболочек (рис. 2). Дальнейшее рассмотрение строения и состава мантии будет проводиться в соответствии с моделью Ю. М. Пущаровского.

Сопоставление моделей
внутреннего строения Земли традиционной (I) и новой (II) (по Ю. М Пущаровскому)
Рис.2. Сопоставление моделей внутреннего строения Земли традиционной (I) и новой (II) (по Ю. М Пущаровскому)

1 - зона раздела 1; 2 - зона раздела II

Верхняя мантия расположена между подошвой земной коры (поверхность М) и границей раздела на глубине 670 км. На глубине 410 км верхняя мантия, согласно представлениям Ю. М. Пущаровского, разделена на верхнюю и нижнюю части. Верхняя часть в традиционных моделях мантии соответствует всему объему верхней мантии. В свою очередь она состоит из двух основных слоев. Верхний слой (субстрат по Е. Люстиху) совместно с земной корой образует литосферу. Эта жесткая оболочка, характеризующаяся высокой прочностью и упругими свойствами, залегает на ослабленном, пластичном астеносферном слое. Надастеносферный слой мантии имеет преимущественно перидотит-эклогитовый состав, плотность до 3,3 г/м3и скорости распространения сейсмических волн 7,9 - 8,4 км/с. В связи с этим его иногда называют перидотитовым слоем (рис. 3).

Принципиальная схема строения верхней мантии Земли
Рис.3. Принципиальная схема строения верхней мантии Земли

1 - астеносфера; 2 - субстрат (перидотитовый слой); 3 - земная кора

Подошва литосферы определяется положением температурной поверхности солидуса мантийного вещества (порядка 1300 ºС). Под материками подошва литосферы залегает на глубинах от 150-200 км под молодыми платформами, до 250-350 км под щитами древних платформ, тогда как под океанами от 7-10 км под гребнями срединно-океанических хребтов до 30-90 км под абиссальными участками дна.

Такое существенное различие в мощностях континентальной и океанической литосферы объясняется более древним возрастом первой. Литосфера расположена на астеносфере - важнейшей оболочке верхней мантии. На существование последней было указано американским геологом Дж. Баррелом - еще в 1914 г. В 1926 г. Б. Гутенберг отметил первые ее геофизические признаки в виде снижения скорости распространения упругих волн. Судя по скорости восстановления изостатического равновесия Скандинавского полуострова, нарушенного образованием покровного ледника в четвертичный ледниковый период, вязкость вещества астеносферы составляет порядка 1020-5·1020 П (пуаз), что на 2-3 порядка ниже, чем в выше- и нижележащих областях мантии (для сравнения, вязкость воды составляет 10-2 П, асфальта - 1010-1012 П, стекла - 1013 П, стали - 1018-1020 П).

Положение кровли и подошвы астеносферы будет определяться пересечением кривой изменений температуры мантии с кривой изменения температуры солидуса мантийнoгo вещества (рис.4). В пределах астеносферы происходит частичное (от 1 до 10 %, по А. Рингвуду) плавление базальтовых составляющих. Базальтовые жидкости заполняют межгранулярные пространства между более тугоплавкими кристаллами перидотита, образующими упругий каркас ослабленного слоя. О частичном расплавлении вещества астеносферы свидетельствует резкое возрастание в ее пределах электропроводности, получаемое по данным магнитотеллурического зондирования.

Схема, иллюстрирующая температурные режимы существования 
литосферы и астеносферы
Рис.4. Схема, иллюстрирующая температурные режимы существования литосферы и астеносферы

Тм - температура мантии; Tad - адиабатическая температура мантии; Ts - температура солидуса мантийного вещества

Экспериментальные исследования показывают, что при частичном плавлении ультраосновных пород при давлении 103 МПа первые порции базальтового расплава возникают в местах тройных сочленений зерен породы и образуют взаимосвязанную систему каналов при сохранении скелета (матрицы) породы. На этом основании А. В. Каракин и Л. И. Лобковский выдвигают и расчетами обосновывают положение о слоистой структуре астеносферы. По их данным, мощность двухфазового слоя с сообщающимися порами не может превышать некоторой предельной величины, при достижении которой у кровли слоя происходит гидроразрыв скелета породы поровым давлением каверн, заполненных расплавом. Выше поверхности гидроразрыва могут существовать лишь изолированные магматические камеры в однофазной среде.

Еще выше может вновь появиться слой двухфазной среды с сообщающимися порами и т.д. Таким образом, астеносфера может иметь слоистое строение с чередованием двухфазных и квазиоднофазных слоев. В двухфазных слоях может происходить вертикальная фильтрация магмы. В кровле слоев расплав локализуется в каверны, соединяющиеся в систему горизонтальных каналов. Допускается существенно горизонтальная миграция магмы. При этом она может скапливаться в зонах глубинных разломов, в случае если они проникают в астеносферу и создают в ее пределах области пониженного давления. Таким механизмом можно объяснить, в частности, образование вулканических очагов, питающихся из астеносферы.

Скорости продольных волн в верхней мантии для районов Западной 
и Центральной Сибири (А. В. Егоркин, 2002)
Рис.5. Скорости продольных волн в верхней мантии для районов Западной и Центральной Сибири (А. В. Егоркин, 2002)

Идея слоистого строения астеносферы находит подтверждение в сейсмических материалах. Так, в переходной зоне Азиатского материка к Тихому океану, по данным Р. З. Тараканова и Н. В. Левого, выделяются четыре обособленных астеносферных слоя на глубинах 65-90, 120-160, 230-300 и 370-430 км.

В последние годы были получены дополнительные доказательства слоистого строения астеносферы. Изучение сейсмических явлений при подземных ядерных взрывах, проведенных в российском Центре ГЕОН, показало, что в верхней мантии территории России (районы Западной и Центральной Сибири) фиксируется, по крайней мере, три слоя с пониженной скоростью сейсмических волн на глубинах 75-115 км, 140-170 км и 200-260 км (рис. 5). Ученые Центра (А. В. Егоркин и др.) объясняют это явление химической зональностью верхней мантии. По их мнению, слои с пониженной скоростью сложены пиролитом (т.е. исходным веществом мантии), а слои с повышенной скоростью - тугоплавкими компонентами (дунит, перидотит), которые выделялись в результате частичного плавления пиролита. В первом случае Vр = 8,02-8,23 км/с, во втором - 8,34-8,60 км/с.

Влияние астеносферы на явление изостазии

Все крупные поверхностные структуры Земли (горные сооружения, океанские впадины и т.п.) почти идеально изостатически скомпенсированы. Если бы это условие не выполнялось, то, во-первых, реальная фигура Земли (геоид) существенно отличалась бы от теоретической модели (референц-эллипсоида), и, во-вторых, на поверхности Земли наблюдались бы интенсивные региональные гравитационные аномалии, отражающие избыток или дефицит масс поверхностных структур.

Строго говоря, почти идеальная изостатическая компенсация крупных структур земной поверхности означает, что они в незначительной степени все же отклоняются от состояния полного архимедова равновесия, но стремятся к нему. Это стремление проявляется прежде всего как реакция на внешнюю (поверхностную) нагрузку. Крупные участки земной поверхности погружаются, если их вес увеличивается (например, за счет накопления осадков), и воздымаются, если их вес уменьшается (например, за счет таяния ледников). Восстановление изостатического равновесия происходит по геологическим меркам чрезвычайно быстро – за первые десятки тысяч лет. Поэтому для каждого интервала геологической истории (в том числе для современного) характерна почти идеальная изостатическая компенсация крупных поверхностных структур глубинными плотностными неоднородностями.

Феномен изостазии был бы невозможен, если бы в глубинах Земли не существовал глобально выраженный ослабленный слой (точнее, сферическая оболочка), ведущий себя в геологических масштабах времени как вязкая жидкость. Отсюда вытекает представление о наличии в верхней мантии Земли реологической границы, отделяющей вышележащую литосферу от подстилающей астеносферы.

С существованием астеносферы связывают явление изостазии, которое выражается в стремлении литосферы к равновесному состоянию. Существует два способа осуществления изостазии (рис. 6). Первый состоит в том, что горы обладают корнями, погруженными в мантию, и изостазия обеспечивается вариациями мощности земной коры (модель Дж. Эри). В этом случае нижняя поверхность коры обладает обратным рельефом по отношению к земной поверхности. Возникают так называемые «корни гор».

Схемы изостатического равновесия земной коры
Рис.6. Схемы изостатического равновесия земной коры

а - по Дж. Эри, б - по Дж. Пратту. Цифрами указана плотность

Модель Дж. Пратта дает другое объяснение изостазии: участки повышенного рельефа должны быть сложены менее плотными породами, а районы с пониженным рельефом - более плотными. Подошва земной коры должна иметь горизонтальный характер.

На самом деле уравновешенность континентов и океанов достигается сочетанием обоих механизмов. Гравиметрические исследования показывают, что в целом поверхность нашей планеты находится в состоянии, близком к равновесному. Астеносфера и является тем пластичным слоем, который выравнивает давления разновысотных и разноплотностных блоков литосферы. Примерно на глубине 100 км давление литосферы оказывается одинаковым вне зависимости от рельефа местности. Однако, по данным М. Е. Артемьева, имеется отклонение от этого правила. В частности, существенными изостатическими аномалиями обладают подвижные пояса земного шара, прежде всего, островные дуги и сопряженные с ними глубоководные желоба.

 


 

Реклама