История развития генетики в России


Рождение генетики совпадает с началом ХХ века, когда были переоткрыты установленные Грегором Менделем законы наследования признаков. К 1915 году была создана хромосомная теория наследственности американского генетика Томаса Моргана. Постулированные Менделем наследственные факторы (гены) удалось связать с определенными отдельными районами (локусами) хромосом. В то же время прояснились загадочные танцы хромосом, наблюдаемые в период деления клеток, их роль в определении пола, развитии организмов и эволюции. На рубеже 20-х годов генетика возникает и в России. Но не подобно Афродите из пены морской, а как еще одна живая ветвь плодоносящего дерева, которое представляла собой русская  биология в начале ХХ века.
Наука была привнесена в Россию по прихоти Петра I, примерно также, как затем во времена Екатерины II был насильственно внедрен картофель. Оба нововведения прижились. Академия Наук в Петербурге стала оплотом просвещения и привлекала в Россию прекрасных ученых с Запада. Так, в 1834 году в Россию переехал Карл Бэр (1792-1876), один из основателей эмбриологии. Он открыл яйцеклетку и первый детально описал ход индивидуального развития у животных. К началу ХХ века в России сложились оригинальные направления в разных областях биологии. И вот результат. В первое десятилетие ХХ века двое биологов России были удостоены Нобелевской премии - И.И.Мечников (1908) и И.П.Павлов (1904). Сравним: в США первая Нобелевская премия по биологии была присуждена Т.Моргану лишь в 1933 году. Помимо государства, в России в начале века науку стали поддерживать и меценаты. Так, в 1908-1909 гг. на средства генерала А.Л.Шанявского и купца Х.С.Леденцова в Москве создаются Народный университет, Московское общество научного института и Общество содействия  успехам опытных наук.
Вскоре после открытия Университет Шанявского стал приютом и оазисом для многих из 130 ученых, ушедших в знак протеста в 1911 году из Московского университета. В их числе был и профессор Николай Константинович Кольцов (1872-1940), которого знаменитый немецкий зоолог и генетик Рихард Гольдшмит назвал самым образованным из всех известных ему биологов. На базе народного университета Кольцов создал в 1917 г. первый и лучший на то время в Европе Институт экспериментальной биологии (ИЭБ). В 1921 г. он предложил зоологу С.С. Четверикову организовать в ИЭБ генетическую лабораторию. Отсюда и ведет свое начало знаменитая Московская школа генетики с такими именами как Б.Л.Астауров, Е.И.Балкашина, С.М.Гершензон, Н.П.Дубинин, Д.Д.Ромашов, А.С.Серебровский, Н.В.Тимофеев-Ресовский. Уже к середине 1923 г. вышли труды Института и номера двух новых журналов. Четвериков проводил на своей квартире семинар-кружок по проблемам эволюции под названием СООР ("совместное орание"). Участники отбирались по типу эмпатии, они должны были свободно читать на трех языках научную литературу. В кружке создавалась атмосфера, оптимальная для развития научного таланта, широты и критичности мышления. Н.В.Тимофеев-Ресовский, оказавшись затем в Германии, организовал по типу СООР европейские семинары (или "трепы", по его словам) с участием многих известных биологов и физиков Европы.
В Петербурге возникла своя школа генетики, связанная прежде всего с именами Юрия Александровича Филипченко (1882-1930) и Николая Ивановича Вавилова (1887-1943). Уже в 1913 году зоолог Филипченко начал читать в Петербургском университете первый в России факультативный курс генетики. В 1918 году он создал первую в России кафедру экспериментальной зоологии и генетики. Его учеником и ассистентом был Ф.Г.Доб(р)жанский, который вскоре в 1927 году получил стипендию Рокфеллера для работы в лабораториии Моргана и остался в США, будучи признан затем главой американских эволюционных биологов.
В 1921 году Вавилов переезжает из Саратова в Петроград и вскоре возглавляет Всесоюзный институт растениеводства - ВИР. В короткие сроки Вавилову удалось создать ансамбль первоклассных исследователей, объединенных грандиозной задачей: собрать в ВИРе мировую коллекцию культурных растений и их сородичей, выявить потенциал ценных генов и ввести их в селекцию. За 10-15 лет эта задача была, в основном, выполнена.

Достижения генетики в России в 20-40х годах

В 1926 году С.С.Четвериков публикует большую программную статью о связи теории эволюции и генетики. Как и в случае с Менделем, эта статья знаменовала собой рождение новой области - генетики популяций. Она включала ряд новых концепций, предсказаний и описание методов их проверки. Прежде всего это концепция "мутационного давления", процесса возникновения новых наследственных изменений (мутаций) - столь же неизбежного для пригородных видов, сколь неизбежен радиоактивный распад. Каждый вид "впитывает" в себя вновь возникающие мутации, они накапливаются в скрытом состоянии и могут служить источником эволюционных преобразований. Был сделан важный концептуальный вывод, что накопленное генное разнообразие должно выявляться в условиях изоляции и уже без всякого отбора приводить к различиям между популяциями и индивидами в природе. Четвериков создал понятие "генотипическая среда", а А.С.Серебровский ввел другое, столь же известное ныне, понятие "генофонд" - для сопоставления генных различий между популяциями. Таким образом, удалось связать теорию  Дарвина  с менделеевской генетикой.
Способность к матричному самовоспроизведению нуклеиновых кислот ДНК и РНК рассматривается ныне как основа жизни. Но именно Н.К.Кольцов в 1927 году выдвинул концепцию, что хромосомы представляют собой гигантские молекулы, способные к самовоспроизведению. Этот постулат уже в 30-е годы получил косвенное подтверждение в начатых Тимофеевым-Ресовским в Германии работах по радиационной генетике. Их цель была установить, с какой частотой возникают мутации под действием разных доз и видов облучения. В итоге, количественные расчеты привели к важному выводу, что повреждения, вызываемые облучением, являются не мульти- а мономолекулярными. Это хорошо гармонировало с идеей Кольцова о хромосоме как одной гигантской молекуле. На основе выдвинутого "принципа попаданий" удалось впервые определить примерный молекулярный объем гена.
Попытка выяснить строение гена была предпринята в серии работ на дрозофиле А.С.Серебровского и его учеников (Н.П.Дубинин, Б.Н.Сидоров, И.И.Агол, Н.И.Шапиро). Атака на ген оказалась успешной. Впервые был сделан вывод о делимости гена и его сложной линейной структуре. В середине 30-х был открыт и изучен "эффект положения" генов, когда нормальный ген, будучи искусственно перенесен в другое место хромосомы, менял характер своего проявления (Н. П. Дубинин, Б.Н.Сидоров, В.В.Хвостова, А.А.Прокофьева-Бельговская). Этот феномен, связанный с регуляторными отношениями между генами, является и ныне одной из  горячих точек  современной  науки.
Из работ отечественных генетиков, наибольшее мировое признание, получили, пожалуй, работы академика Н.И.Вавилова и его коллег по ВИРу. Вавилов был одновременно генетиком, систематиком, эволюционистом, физиологом растений, выдающимся организатором науки и общественным деятелем, а также крупным географом-путешественником. Отметим здесь только три его новые концепции: 1) закон гомологических рядов в наследственной изменчивости, 2) учение о центрах происхождения культурных растений; 3) представление о сложной полиморфной структуре биологических видов. Закон Вавилова устанавливал определенные правила формообразования и позволял предсказывать у данного вида, еще не открытые, но возможные признаки (аналогия с системой Менделеева).
Широкую известность получили работы сподвижников Вавилова в области изучения хромосом. Так, Г.А.Левитский ввел в биологию термин "кариотип" - для описания базовых особенностей морфологии хромосом одного вида и сравнения их между собой у разных организмов и видов. В 1934 году он впервые у растений показал, как под действием облучения хромосомы распадаются на фрагменты  и перестраиваются.
Ныне, в конце ХХ века у всех на слуху слова "генная инженерия". Между тем, еще в 20-е годы ученик Вавилова Г.Д.Карпеченко, работая в ВИРе, создал удивительный метод хромосомной инженерии. Его работы входят теперь во все учебники по генетике. Он показал возможность преодоления бесплодия отделенных гибридов за счет удвоения наборов хромосом обоих родителей. Таким путем впервые были получены гибриды между капустой и редькой, а затем созданы новые виды пшениц при их отдаленной гибридизации друг с другом и с сородичами. Этим методом широко пользовалась и природа, создавая новые виды растений. Впоследствии ученик Четверикова академик Б.Л.Астауров путем хромосомной инженерии впервые получил отдаленные гибриды у животных на примере тутового шелкопряда.
В 1932 г. под впечатлением успехов генетики в России было решено провести очередной Международный Генетический Конгресс. Но на это советские власти не дали разрешения. Надвигалась эпоха Лысенко. К началу 40-х годов Вавилов и его коллеги Левитский, Карпеченко, Л.Говоров были репрессированы.

Репрессии генетической науки

Где корни случившегося в 1948 году погрома генетики и воцарения Лысенко? Первое после революции десятилетие - период бурного роста и успехов русской генетики, возникшей на крепком биологическом фундаменте. Отношение власти к науке было амбивалентное. С одной стороны, естественные науки, и в их числе генетика, получали солидную государственную поддержку. Открывались новые вузы, кафедры, музеи, под которые нередко отдавались старинные особняки и дворцы. Сотрудники и студенты были полны оптимизма и энтузиазма. Политика государственного попечительства совпадала с интересами и устремлениями таких научных гигантов, как Н.И.Вавилов. Эта невиданная ранее для стран Европы государственная поддержка пропагандировалась, поражала и гипнотизировала большинство западных ученых.
Режим фетишизировал науку, но одновременно низводил ее на роль служанки ("наука на службе социализма") в социалистической "перестройке"  общества.
Все, что не соответствовало этим целям - подавлялось. Поэтому, одновременно с ростом естественных, уже в первые годы революции были просто разгромлены социальные науки: история, философия и те течения общественной мысли, которые хоть в малейшей мере оппонировали или выходили за рамки марксистской догмы. Наука попала в золотую клетку. С 1929 г. с началом Великого Перелома возрастает роль репрессивных органов. Одной из первых жертв стал профессор С.С.Четвериков и его лаборатория. По нелепому доносу его арестовывают и без суда и следствия ссылают в Свердловск. Он уже никогда не возвращается в Москву. Лаборатория распадается, ряд ее членов также подвергаются ссылке. Другие, спасаясь от репрессий,  уезжают  из Москвы.
Кольцова глубоко интересовала генетика человека. В своем ИЭГ он начал исследования по изучению близнецов и основал в 1922 г. "Русский евгенический журнал". В опубликованной в 1923 г. в этом журнале статье "Генетический анализ психических особенностей человека" Кольцов наметил программу исследования на десятилетия. В 1932 году по его инициативе был создан Медико-Биологический институт, работавший с таким энтузиазмом и энергией, что за 4 года вышло 4 тома оригинальных работ, многие из которых до сих пор не утратили актуальности. Однако, в 1936 году институт в одночасье был закрыт, а его директор С.Г.Левит вскоре расстрелян. Все работы по генетике человека и медицинской генетике были прерваны на четверть века. В итоге целые поколения врачей остались без столь необходимых генетических знаний.
Истории воцарения и господства Лысенко в 1948 г. посвящены многие книги. Отметим здесь главное. Боевая операция по разгрому генетики на Сессии ВАСХНИЛ в августе 1948 года, которую проводил Лысенко, была лично одобрена Сталиным.
.. Были сразу уволены десятки и сотни ведущих профессоров и преподавателей. Из библиотек изымались и уничтожались по спискам биологические книги, основанные на менделевской генетике. Пламя погрома перекинулось на цитологию, эмбриологию, физиологию и достигло даже таких  отдаленных  областей,  как  квантовая  химия.

Возобновление деятельности

После смерти Сталина в 1953 г., в период "оттепели", усиливается противостояние лысенковскому обскурантизму. Начиная с 1953 г. известный эволюционист проф. А.А.Любищев и вернувшийся из лагеря генетик В.П.Эфроимсон посылают в ЦК партии, в журналы, ведущим биологам серии критических статей о монополии Лысенко в биологии, анализируя большой урон со стороны лысенковщины сельскому хозяйству, медицине, экономике. В 1955 г. в ЦК партии было направлено знаменитое "письмо трехсот", подписанное ведущими биологами, затем к нему присоеденились письмо ряда академиков-физиков. В 1956 г. проф. М.Е.Лобашев начинает читать курс классической генетики на возглавляемой им кафедре генетики в Ленинградском университете. В это же время в Институте биофизики и Институте атомной энергии создаются генетические лаборатории, а затем в 1957 г. Институт цитологии и генетики в Сибирском отделении АН СССР (Академгородок, Новосибирск).
Вместе с тем, еще в декабре 1958 г. была разогнана редакция "Ботанического журнала" во главе с акад. В.Н.Сукачевым за публикацию серии критических статей об идеях Лысенко. В 1963 г. такая же участь постигла журнал "Нева" за яркую и смелую статью генетиков В.С.Кирпичникова и Ж.А.Медведева "Перспективы советской генетики". Однако явное падение Лысенко началось лишь вслед за падением Н.С.Хрущева в 1964 г. В сентябре 1965 года на заседании Президиума АН под руководством акад. М.В.Келдыша впервые, наконец, открыто подверглись критике методы и результаты деятельности Лысенко. В 1965 г. он был снят с поста директора академического Института генетики, который он занимал целых четверть века лет после ареста Вавилова, навязывая через систему государственных учреждений свои бредни.
В этом кратком очерке можно назвать лишь наиболее важные работы отечественных генетиков последней трети ХХ века. К ним, в первую очередь, относится, сделанное И.А.Рапопортом открытие супермутагенов - веществ, в десятки и сотни раз повышающих частоту возникновения мутаций у самых разных организмов. С использованием супермутагенов сделаны важные работы в теории мутаций, получены новые штаммы антибиотиков и новые сорта растений (Рапопорт останется в истории генетики и как единственный биолог, который в 1948  году открыто отказался признать лысенкоизм).
Несомненным достижением отечественной генетики является открытие у животных на примере дрозофилы "прыгающих генов" и свидетельства того, что эти гены вызывают вспышки нестабильных мутаций в лаборатории и природе и связаны с адаптивными преобразованиями генетической системы клетки. Оригинальные результаты, полученные в рамках этого направления российскими генетиками, включая мировые исследования по этой проблеме, были обобщены в замечательной сводке Р.Б.Хесина "Непостоянство генома". Эта сводка несомненно войдет в золотой фонд российской науки. В ней обосновано положение о потенциальном единстве генофонда земных организмов за счет горизонтального переноса генов вирусами и другими подвижными элементами. С именем Р.Б.Хесина, ученика А.С.Серебровского, связано зарождение и развитие молекулярной генетики в стране, которое происходило под крышей Института  атомной энергии.
Блестящий цитолог и генетик В.В.Прокофьева-Бельговская, ученица Ю.А.Филипченко, создала школу цитогенетиков, изучающих поведение и структуру хромосом человека в норме и патологии ("хромосомные болезни"). Вместе с другим генетиком, В.П.Эфроимсоном, они возродили исследования по медицинской генетике. Однако влияние идеологических запретов на изучение наследственности человека оказалось столь велико, что книга В.П.Эфроимсона "Генетика гениальности" более 20 лет не могла пробиться в печать и вышла лишь в 1998 году.

Современная работа. Расшифровка генома в России

Об этом в 2009 году официально сообщили в Российском научном центре "Курчатовский институт", где недавно была завершена эта сложная работа.

Таким образом, в России произведена всего восьмая в мире полная расшифровка генома. При этом россияне добились результата собственными силами и всего за полгода. "Расшифрован полный геном русского мужчины, - рассказал руководитель геномного направления в РНЦ "Курчатовский институт" академик Константин Скрябин. - После того, как были определены генетические "портреты" американца, корейца, африканца, европейца и представителей ряда других национальностей, теперь появилась возможность сравнить с ними русский геном".

Геном - это совокупность всех генов организма, т.е. материальных носителей наследственной информации, набор которых родители передают потомкам. Физически ген представляет собой участок ДНК, несущий какую-либо целостную информацию, например, о строении молекулы белка. Соответственно, набор генов - это большое описание, "проект" всего организма, инструкция его построения. "Это нужно в первую очередь для медицины. С помощью такого анализа мы сможем точнее определять, какие гены вызывают, например, наследственные болезни", - разъяснила ведущий сотрудник лаборатории геномного анализа Евгения Булыгина смысл этой большой и дорогостоящей работы.

Впрочем, российским исследователям расшифровка генома далась значительно дешевле и быстрее, чем зарубежным коллегам. Это, в первую очередь, связано с использованием достижений нанотехнологий для чтения генетической информации. Значительную трудность, по словам Булыгиной, представляли математические расчёты, которые, собственно, и "подтормаживали" исследование. Ведь общее число генов в человеческом геноме составляет 20-25 тыс. "Но наши учёные создали соответствующее программное обеспечение, - сообщила Булыгина. - Плюс сильно помог курчатовский суперкомпьютер".

Суперкомпьютер, а точнее центр обработки и хранения данных на его основе, является одним из слагаемых новой структуры, созданной в Курчатовском институте - Центра конвергентных нано-био-инфо-когнитивных наук и технологи /НБИК/. "Этот центр создается для принципиально новых прорывов в исследованиях природы и создании новых технологий на основе объединения и даже слияния различных наук,- пояснил необходимость создания такого центра инициатор и научный руководитель этих исследований директор Курчатовского института член-корреспондент РАН Михаил Ковальчук. - Нынешний этап развития науки и технологий требует не только построения новой исследовательской инфраструктуры, но и перехода к новой, междисциплинарной научной ментальности". Выполнение этой задачи, считает учёный, возможно не просто путём соединения одной технологии с другой, а при помощи конвергенции - взаимопроникновения наивысших технологических достижений и знаний о живой природе.

Инфраструктурной, кадровой, образовательной базой этой конвергенции наук и технологий и стал НБИК-центр в Курчатовском институте. Сегодня он включает в себя новый нанобиотехнологический корпус, специализированный источник синхротронного излучения, исследовательский нейтронный реактор и тот самый центр обработки и хранения данных на базе суперкомпьютера, который помог ускорить работу по расшифровке генома человека. "И это только самое начало большого и сложного пути, - говорит Ковальчук. - Конвергенция наук и технологий требует принципиально новых подходов в науке, работы на единую цель, междисциплинарности. Так, геномный прорыв стал возможным благодаря тому, что в работах Курчатовского института принимали участие сотрудники Центра биоинженерии РАН и Российского онкологического центра имени Н.Н.Блохина".

Сегодня в Курчатовском НБИК Центре уже работает прообраз завода будущего, включающий в себя синхротронные и нейтронные экспериментальные станции, нанотехнологическую, генетическую лабораторию, белковую фабрику, лабораторию когнитивных исследований и многое другое. "С появлением конвергентного Курчатовского НБИК-Центра у российской науки создан задел на десятилетия, который обеспечит нам лидирующие позиции среди ведущих научных центров мира" - убеждён Ковальчук.

Проект 10К в Санкт-Петербурге

Основной задачей проекта является создание лабораторий, в которых студенты и научные сотрудники будут разрабатывать, испытывать и внедрять различные компьютерные методы для «сборки» геномов позвоночных животных,  выявления функций генов с последующим внедрением полученных результатов в медицинскую практику. Предполагается, что исследования будут содействовать также сохранению биоразнообразия и охране окружающей среды. 27 апреля состоялась международная конференция, посвященная открытию Центра. Руководить Центром будет генетик из США – доктор Стефан Д. О’Брайен (Stephen J. O'Brien), в настоящее время работающий в СПбГУ.

Также в число сотрудников Центра вошли победитель конкурса мегагрантов Правительства Российской Федерации для государственной поддержки научных исследований, проводимых под руководством ведущих учёных в российских образовательных учреждениях высшего профессионального образования, Павел Певзнер и директор Биомедицинского центра, профессор СПбГУ  Андрей Козлов.

Научные исследования Центра будут направлены на изучение генетической резистентности к инфекционным заболеваниям и раку, сравнительному изучению организации геномов разных биологических видов, особенно редких и исчезающих животных.

Одно из направления работы Центра – участие в проекте 10К, одним из координаторов которого является доктор Стефан Д. О’Брайен. Цель проекта – расшифровка геномов как можно большего числа видов позвоночных животных. В проекте уже принимают участие зоопарк Сан-Диего (США), Калифорнийский университет (США), Американская генетическая ассоциация (American Genetic Association (AGA), Пекинский институт геномики (Beijing Genomics Institute) и другие организации.

Стефан Д. О’Брайен так охарактеризовал этот проект: «Если расшифровка генома человека - это Библия, то проект 10К - это все остальные книги».

Другое важнейшее направление работы Центра – исследование рака.  Это направление будет курировать Андрей Козлов, один из ведущих российских специалистов по изучению рака и ВИЧ\СПИД.  Ученый много лет разрабатывает теорию эволюционного значения опухолей. Согласно этой теории, опухоли в ряде случаев могут создавать условия для активации генов. В ходе  работ, выполненных под его руководством методами молекулярной гибридизации, было показано, что в опухолях млекопитающих экспрессируются уникальные последовательности, не экспрессирующиеся ни в одной «нормальной» ткани.

В июне 2010 года Козлов  с коллегами опубликовали в Journal Infectious Disease свои результаты: они обнаружили, что в острой фазе ВИЧ-инфекции у наркозависимых пациентов в 70% случаев присутствуют одинаковые вирусные геномы. Это открытие вызвало широкий резонанс у международной научной общественности, ему была посвящена статья в июльском номере журнала Science.

Еще один ведущий сотрудник Центра геномной биоинформатики  – Павел Певзнер. Профессор Певзнер много лет проработал в США, но выиграв мегагрант, не задумываясь вернулся в Россию. Сейчас он работает в Санкт-Петербургском академическом университете, который специализируется на магистратуре и аспирантуре в области физики и нанотехнологий.

Ещё материалы по генетике:
Закон Томаса Моргана
Законы Менделя
Предпосылки появления генетики
Роль генетики в медицине



Реклама