Строение клетки растений


Клетки растений весьма разнообразны по форме и размерам. Форма и величина их определяется местом положения в организме растения, а также выполняемыми функциями. Клетки, входящие в состав различных тканей и органов, значительно различаются по ширине и длине, но чаще всего они вытянуты и имеют заостренные концы. Например, длина клетки покрытосеменных колеблется в пределах от 100 до 1000 мкм. Паренхимные клетки плодов и клубней растений достигают более 1 мм. Большие размеры имеют клетки лубяных волокон. Так, у льна и копли длина волокна составляет 20-40 мм, а у хлопчатника – 65 мм. Однако, чаще всего клетки мелкие, величиной 20-50 мкм и их можно видеть только под микроскопом.

Общая численность клеток, составляющих растение, выражается астрономическими цифрами, достигая нескольких сотен и тысяч миллиардов.

Клетка растений состоит из двух основных структур – цитоплазмы и ядра. Цитоплазма ( от греческого cytos – клетка, plasma – первичная масса) и ядро тесно связаны между собой и представляют единую живую систему. Цитоплазма без ядра существовать не может, так же как и ядро без цитоплазмы. В начале развития учения о клетке чешский физиолог Пуркинье (1839) назвал содержимое клетки протоплазмой (от греческого protos – первый). Клетка одета клеточной оболочкой (мембраной), состоящей из клетчатки и пектиновых веществ (целлюлоза, лигнин, воск и др.). мембрана имеет поры через которые вещества могут проникать из одной клетки в другую.

Основную часть объема клетки занимает цитоплазма. Слой цитоплазмы, прилегающий к оболочке, называется экзоплазмой. Он более вязкий и лишен гранул по сравнению с внутренним слоем, называемым эндоплазмой. В электронном микроскопе цитоплазма представляется однородной зернистой массой. Она состоит из прозрачного вещества гиалоплазмы (от греческого hyalos – стекло и плазма) и взвешенных в ней мельчайших частиц – гранул. Гиалоплазму называли вначале матриксом. В цитоплазме находятся органоиды и включения, протекают биохимические реакции, осуществляется транспорт веществ.

В состав цитоплазмы входит 10-20 % белков, 2-3 % липидов, 1-2 % углеводов и примерно 1 % минеральных солей и других веществ. В водной среде цитоплазмы растворены минеральные вещества и находятся органические соединения, представленные двумя группами: полупродукты синтеза и распада (аминокислоты, моносахариды, глицерин, жирные кислоты, азотистые основания и др.) и конечными продуктами синтеза (белки, углеводы, липиды, нуклеиновые кислоты, ферменты, витамины и др.). Наибольшее значение в жизнедеятельности растительной клетки играют белки. Недаром голландский ученый-химик И. Мудлер назвал белки протеинами, что в переводе означает первостепенно важные. Белки выполняют структурную роль, являются составной частью витаминов, ферментов, гормонов, участвуют в многочисленных реакциях обмена, имеют первостепенное значение в защитных реакциях и т. д.

Липиды являются главным образом запасными веществами клетки. Они – источник энергии. Некоторые липиды входят в состав ядерных и клеточных оболочек и многочисленных мембран.

Углеводы представлены в цитоплазме в виде моно и дисахаридов. В состав клетки входит также крахмал, играющий роль запасного вещества. Источником внутриклеточной энергии является глюкоза. Исключительно важное значение имеет рибоза и дезоксирибоза. Первая входит в состав рибонуклеиновой кислоты (РНК), вторая – дезоксирибонуклеиновой кислоты (ДНК).

Минеральные вещества находятся в цитоплазме в виде свободных соединений и в связанном состоянии с белками, жирами и углеводами.

Вода входит в состав коллоидов цитоплазмы, она обеспечивает процессы гидролиза и окисления веществ.

Ядро покоится в цитоплазме. Впервые его обнаружил английский ученый Р. Броун (1831), рассматривая под микроскопом клетки растений из семейства орхидных. Ядро – важнейший и постоянный компонент всех эукариотических клеток. исключительная важность ядра для жизнедеятельности клеток доказана опытным путем, например, с одноклеточной водорослью ацетобулярией. Клетка водоросли состоит из шляпки и ножки длиной 4-6 см. шляпка содержит цитоплазму, а ядро находится в нижней части ножки. При отделении шляпки от ножки она погибает, а ножка в которой находится ядро. Продолжает жить и образовывать шляпку, т.е. часть растения, содержащая ядро обладает способностью регенерации.

Ядра клеток разнообразны по форме и размерам. Обычно форма ядер связана с формой клеток, но иногда отличается от последней. В основном ядра имеют округлую или овальную форму. У большинства растений размер их колеблется в пределах 10-20 мкм. Форма и величина ядра зависит от возраста клетки, физиологического состояния и факторов внешней среды. Ядро клетки занимает около 1/5 ее объема. В нем различают ядерную оболочку, ядерный сок (кариолимфу), хроматин и ядрышки. Ядро отграничено от цитоплазмы ядерной оболочкой (мембраной), которая состоит из внутреннего сплошного и внешнего пористого листков. Листки мембраны представлены в основном протеинами и липидами. Главная функция ядерной мембраны – регулирование поступления веществ из цитоплазмы в ядро и обратно.

Ядерный сок представляет собой жидкое или полужидкое содержимое ядра. Кариолимф а и содержащиеся в ней глыбки хроматина (от греческого chroma – цвет) называется хромоплазмой. Субмикроскопический состав хромоплазмы аналогичен составу цитоплазмы. Электронной микроскопией в ней выявлены тонкие нити и гранулы.

В ядре клеток обнаруживается 1-2 ядрышка, которые содержат большое количество РНК. Методом авторадиографии установлено, что РНК ядрышков проникает в рибосомы цитоплазмы и принимает активное участие в синтезе белков.

Для химического состава ядра характерно наличие большого количества ДНК и белков-гистонов. ДНК входит в состав хромосом, являющихся компонентами ядра и материальными носителями наследственности.

Нуклеиновые кислоты впервые обнаружил швейцарский биохимик Мишер (1869) в ядрах животных клеток. Название их происходит от латинского nucleus – ядро.

Ядро является центром, управляющим всеми процессами жизнедеятельности клетки, в нем сосредоточены материальные носители наследственности всех признаков организма.

Цитоплазма растительных клеток представляет собой довольно сложную структурную систему.

Электронная микроскопия позволила выявить, что она – совокупность коротких и длинных, узких и широких, замкнутых и не замкнутых внутренних мембран и канальцев была названна эндоплазмотической сетью, которая открыта в 1945 г (Портер, Клод и др.). Реальное существование ее окончательно доказано к 1958 году. Внутренне пространство эндоплазмотической сети заполненное гомогенным веществом, состав которого остается малоизученным.

Различают две разновидности эндоплазмотической сети: гранулярную и агранулярную. Первая характеризуется наличием на поверхности мембран мелких гранул, получивших название рибосом. Гранулярная эндоплазмотическая сеть участвует в синтезе белков, а агранулярная – в синтезе липидов и углеводов. Эндоплазмотическя сеть связана со всеми структурами клетки. Ее оценивают как органоид общего значения, участвующий в процессах синтеза, обмене веществ, обеспечивающий взаимосвязь элементов клетки между собой и с окружающей средой.

В цитоплазме всех растительных клеток имеются мелкие частицы рибосомы ( от греческого soma – тело и от начала слова рибонуклеиновая кислота), которые можно видеть только в электронный микроскоп. Они свободно располагаются в цитоплазме или прикреплены к мембране эндоплазмотической сети и ядерной оболочке. Иногда рибосомы располагаются в виде скоплений (от 5 до 70). Такие группы рибосом получили название полисом или полирибосом. Рибосомы состоят из равного количества белка и РНК. В незначительном количестве в них обнаружены соли магния и кальция. РНК рибосом составляет 80-90 % от общего количества этой кислоты, содержащегося в этой клетке.

Рибосомы обеспечивают процессы внутриклеточного синтеза белка. Их называют своеобразными «фабриками» белка, на «конвейерах», которых происходит сборка из аминокислот белковых молекул. Белок, синтезированный рибосомами, поступает в каналы эндоплазмотической сети, а затем во все органоиды клетки, в том числе и ее ядро. Рибосомы обладают высокой синтезирующей способностью, производя за 1 час белка больше своего веса.

Митохондрии (от греческого mitos – нить, chondros – зерно) – органоиды клетки, ее «силовые станции». Их можно обнаружить в обычный световой микроскоп. Длина митохондрий составляет – 0,5-0,7 мкм, ширина – 0,5-1 мкм. Количество митохондрий в клетке зависит от ее функционального состояния и возраста. В среднем число их колеблется от 2 до 2,5 тысяч. Митохондрии имеют двойную оболочку, которая состоит из наружной и внутренней мембран. Жидкое содержимое митохондрий называется матриксом. Внутренняя мембрана имеет складки, называемые кристаллами. Состоят митохондрии из белка (65-70 %), липидов (25-30 %) и небольшого количества РНК и ДНК.

Основная роль митохондрий заключается в синтезе аденозинтрифосфорной кислоты (АТФ), которая является универсальным источником энергии, которая необходима для обеспечения жизнедеятельности клетки и организма вцелом.

Комплекс Гольджи - сложная структура, состоящая из мембран, гранул и вакуолей. Впервые ее образование открыто итальянским ученым К. Гольджи (1898) и названо его именем. В растительных клетках комплекс Гольджи имеет вид дискретных частиц, равномерно рассеяных по всей цитоплазме. Полагают, что комплекс Гольджи накапливает различного рода ненужные клетке продукты ее жизнедеятельности и избытки воды, подлежащие удалению, т.е. способствует регуляции определенного уровня концентрации веществ в клетке.

Пластиды ( от греческого plastos – вылепленный, eidos – подобный) – органоиды. Присущие клеткам растений. Они устроены очень сложно, способны к самовоспроизведению, тесно связаны со способом питания растений. Пластиды имеют общее происхождение и могу превращаться друг в друга. Различают следующие типы пластид: хлоропласты, хромопласты, лейкопласты.

Хлоропласты содержат пигмент хлорофилл, осуществляющий процесс фотосинтеза, обуславливает зеленый цвет растения. Хромопласты содержат каратиноиды. Обуславливают оранжевую, желтую, красную окраску растений. Каратиноиды выполняют важную роль в процессах обмена веществ в клетке. Лейкопласты ( бесцветные пластиды) являются органоидами. Синтезирующими и запасающими крахмал.



Реклама