Сердечно-сосудистая система рептилий


Все рептилии, за исключением крокодилов, имеют трехкамерное сердце с неполной межжелудочковой перегородкой, и поэтому в большей части кровеносной системы кровь остается смешенной. Имеются две дуги аорты, которые отходят от желудочка самостоятельно, образуя перекрест: правая дуга отходит несколько дорзальнее от «левого» сердца и несет артериальную кровь, левая отходит от «правого» сердца, несколько вентральнее, здесь кровь смешанная. Полное объединение двух потоков крови происходит только после слияния обеих дуг в спинную аорту. Это позволяет на уровне дуг аорты разделять смешенный и артериальный поток большого круга. Так, голова, мускулатура плечевого пояса и собственно миокард снабжаются от правой дуги аорты,  несущей артериальную кровь. Выйдя из желудочка, правая дуга аорты почти сразу, на уровне средней части предсердий отдает два крупных сосуда – правую и левую общие сонные артерии, идущих по бокам шеи, вентральнее трахеи, пищевода и наружной яремной вены. На уровне заднего края головы каждая общая сонная артерия распадается на наружную и внутреннюю, затылочную артерии и артерию щитовидной железы. Не задолго до слияния дуг аорты, от правой дуги отходят общим стволом подключичные артерии и артерии позвоночника. Левая дуга аорты не отдает никаких сосудов и, сливаясь с правой дугой на уровне сердца и дорзальнее пищевода, образует спинную аорту. Дуги аорты, еще до их слияния, принимают каждая со своей стороны соответствующий сонный проток.

В венозной системе развит венозный синус, образованный слиянием трех полых вен. Он входит в состав стенки правого предсердия. Сосуды, несущие кровь от головы и передних конечностей, образуют парные передние полые вены. Имеется воротная система почек, кровь из которой собирается в заднюю полую вену. Часть венозной крови от задних конечностей минует воротную систему и по брюшной вене попадает в воротную систему печени, куда также поступает венозная кровь от органов пищеварения. Легочные вены несут от легких артериальную кровь. Каждая из них сливается из двух сосудов: один несет кровь от дорзальной,  второй – от медиальной части легкого. На уровне бифуркации трахеи легочные вены сливаются в непарный сосуд, который идет вдоль левой стенки трахеи параллельно левой легочной артерии и впадает в левое предсердие.

Мы не сможем подробно рассмотреть здесь всю  кровеносную систему ящериц. Поэтому остановимся только на нескольких «узловых» моментах, отличающих ящериц от высших позвоночных.

Сердце

Сердце у ящериц расположено в грудной полости, но у игуан несколько краниальнее – у верхней апертуры грудной клетки, на уровне грудного пояса, слегка правее  средней линии. У ящериц с вытянутым телом, особенно, у варанов, сердце располагается значительно каудальнее, за рукояткой грудины, то есть почти на середине тела. Положение сердца варьирует у многих рептилий. Например, у сухопутных и древесных змей сердце расположено за головой на дистанции 15-25% от общей длины тела. У водных змей это расстояние составляет 25-45% (Seymour,1987). Считается, что краниальное расположение сердца важно для животных, способных поднимать переднюю половину тела и высоко держать голову – это стабилизирует давление в сосудах головы. У ящериц положение сердца также варьирует, но не думаем, что этому можно дать похожее объяснение. Сердце у ящериц относительно небольших размеров. У рептилий масса сердца составляет около 0,2-0,3% от массы тела, что больше, чем у рыб, но меньше, чем у амфибий. Среди разных видов имеются значительные вариации формы и объема желудочка, толщины его стенки и размеров предсердий. Толстостенный желудочек обычно имеет незначительный объем полости, но способен давать высокое систолическое давление, что важно для активных особей. Правое предсердие слито с венозным синусом. Вентральная стенка венозного синуса у некоторых ящериц соединена с дорзальной стенкой желудочка фиброзной связкой, именуемой дорзальным лигаментом.  Оно может быть почти в два раза больше левого (у змей) или такого же размера (у варанов). Его задняя стенка тонкая, соединительнотканная, тогда как остальные стенки содержат мускульные волокна. На ее светлом фоне хорошо видна узкая, идущая в косом направлении щель – синоатриальное отверстие, соединяющее полость венозного синуса с предсердием. Края щели образованы синоатриальными клапанами, разделяющими эти два отдела и хорошо видными на УЗИ. Правое и левое предсердия разделяет очень тонкая межпредсердная перегородка. В точке соединения предсердий с желудочком часто заметен небольшой бугор – коронарный мешочек (sulcus coronaris). Это характерно для ящериц с одинаковым размером предсердий. Атриовентрикулярное отверстие находится в передней мускульной  стенке желудочка. Оно разделено пополам соединительнотканной перегородкой и закрыто единым атриовентрикулярным клапаном, который прирастает к стенкам отверстия в области перегородки. Каждая из половин клапана закрывает половину отверстия, соответственно связанную с правым или левым предсердием.

Форма желудочка может быть расширенной (основание больше высоты), как у черепах, или вытянутой (основание меньше высоты в 2 раза), как у змей, но обычно они одинакового размера. Верхушка сердца может свободно лежать в перикарде, но у черепах, крокодилов и многих ящериц фиксируется к перикарду короткой связкой (gubernaculum cordis). Стенки желудочка мускульные и ноздреватые. В правой половине вентральной части желудочка виден идущий почти горизонтально тяж мышечных волокон. Это неполная межжелудочковая перегородка, разделяющая его на большую дорзальную  (левый желудочек) и меньшую вентральную (правый желудочек) части. Непосредственно над медиальным концом горизонтальной межжелудочковой перегородки (т.е. левее всего) лежит отверстие правой дуги аорты. Чуть выше отверстия правой дуги (правее), но также в дорзальной части желудочка открывается отверстие левой дуги. Рядом с ним, но вентральнее неполной перегородки открывается отверстие легочной артерии. В основании всех отходящих от сердца артериальных стволов располагаются клапаны, которые у ящериц очень тонкие и легко рвутся. Еще раз: на невскрытом сердце самый правый ствол от препарирующего – легочная артерия, которая видна только на небольшом участке, так как сразу после отхождения от желудочка круто поворачивает дорзально и уходит вглубь. Средний ствол – левая дуга аорты, тянется вперед, но затем поворачивает дорзально и назад и уходит под сердце. Из-под этих двух стволов, направляясь влево от препарирующего, выходит правая дуга аорты, которая сразу отдает ствол общих сонных артерий (Гуртовой, Матвеев, Дзержинский, 1978). Дуги аорты выходят из сердца направо, но затем сразу делают правый поворот на 180° друг относительно друга - это характерно только для рептилий (см. рис.  ).

Сердце расположено в перикарде, соответствующем висцеральному листку брюшины. Он образует околосердечную сумку с перикардиальной полостью, в которой лежит миокард. Перикард всегда необходимо проверять на предмет геморрагий, экссудата или фибринозного выпота. Небольшое количество прозрачной или даже красноватой жидкости можно считать нормой. Перикард представляет собой сравнительно бессосудистую соединительнотканную оболочку. Наружная серозная оболочка сердца, эпикард, гистологически напоминает перикард. Миокард рептилий повторяет общий тип строения сердца амниот, хотя стенка крупного желудочка относительно толще. Волокна миокарда организованы в тяжи и пучки, окружающие камеры сердца. Большинство этих волокон прикреплено к центральной области миокарда и формируют его скелет. Свеже зафиксированные волокна имеют выраженную поперечнополосатую структуру, заметную в продольных срезах. Эти полосы напоминают A,I,H и Z-полосы скелетных миофибрилл, но волокна сердца не так параллельны, как в скелетных мышцах. Они могут ветвиться и переходить друг в друга. На большом увеличении заметны интеркалярные диски, пересекающие длинные отростки некоторых фибрилл. Эти плотные структуры формируются на концах фибрилл и образуют прочные соединения между ними. На обеих их сторонах имеются Z-полосы. Ядра фибрилл миокарда многочисленны и располагаются во внутренних аксиальных участках, в отличие от миофибрилл скелетных мышц, где ядра расположены по периферии. Обычно они овальной формы или вытянуты.

Внутренняя поверхность камер сердца выстлана тонким эндотелием. Крупные многоугольные клетки Пуркинье заметны в виде округлых или овальных скоплений в основании единой атриовентрикулярной перегородки. Хотя эти клетки видны и на срезах, окрашенных гематоксилин-эозином, легче обнаружить их в препаратах, окрашенных трихромом (Frye, 1991). Мелкие и средние пучки проводящей системы сердца можно найти везде, но особенно они многочисленны в центральной зоне стенки желудочка. Жировую ткань изредка можно обнаружить на поверхности эпикарда в основании сердца, но только у ожиревших ящериц. Сравнительно бессосудистые атриовентрикулярные клапаны по структуре не отличаются от аналогов у высших позвоночных. Створки состоят из свободно расположенных звездчатых или мультиполярных клеток, погруженных в строму из тонких коллагеновых волокон и основного муцинового вещества. Свободная поверхность клапанов покрыта тонким эндотелием.

Крупные артерии имеют толстую стенку вследствие развития мышечных и эластических волокон, формирующих туники наружного и среднего слоев, называемых tunica externa и tunica media соответственно. Внутренний слой, или tunica intima, покрыт тонким слоем эндотелия. Вены не имеют гладкомышечных волокон и как правило тонкостенны. Во многих  крупных венах развиты клапаны, представляющие собой чашкообразные расширения внутренней стенки. Лимфатические сосуды – тонкостенные нежные структуры – образованны из выростов эндотелиальных клеток, организованных в виде трубки.

Воротная система почек

Рептилии, подобно птицам, рыбам и амфибиям имеют воротную систему почек (ВСП). ВСП и вентральная брюшная вена – наиболее крупные сосудистые системы в задней половине тела. Они обусловливают некоторую вариабельность венозного возврата в большом круге. Основной смысл воротной системы – отчасти заменить отсутствующую петлю Генле. В условиях дефицита жидкости ВСП с помощью вазоконстрикторов снижает перфузию в капиллярном ложе, кровоток замедляется и происходит пролонгированная реабсорбция воды. Это позволяет сухопутным рептилиям выделять удивительно низкие количества воды с мочой – до 1 мл /кг в сутки. Кровь попадает в ВСП из капиллярного ложа задних конечностей и хвоста, минуя сердце. Это обеспечивает кровоснабжение почки под низким давлением, что важно для реабсорбции воды и электролитов. Разные авторы, в том числе, эмбриологи, морфологи и сравнительные анатомы по-разному трактуют ВСП, что вызывает путаницу. Основные компоненты ВСП – задняя часть полой вены, брюшная вена, наружные подвздошные вены, воротные вены и их васкулатура. В узком понимании ВСП ограничивается воротными венами от каудальной части тела до почек, откуда кровь, поступая в почки, снабжает капилляры их тубулярной системы. Венулы покидают капиллярное ложе почечных канальцев и сливаются, формируя выносящие вены почек, которые впадают в заднюю полую вену. Таким образом, кровь от приносящих вен сразу попадает в систему венул проксимальных почечных канальцев, минуя Боуменову капсулу. Следовательно, препараты, попадающие в ВСП, не подвергаются клубочковой фильтрации, а могут удаляться путем тубулярной секреции.

Кровь, возвращающаяся от хвостовой вены, может также обходить почки в результате шунтирования приносящих вен с венами брыжеек. Имеется несколько типов анастомозов, варьирующих у разных видов. ВСП исследовали у 6 игуан методом цифровой ангиографии, сделанной до и после введения йогексола (Benson, Forrest, 1999). У трех ящериц контраст вводили в хвостовую вену, а у остальных – через внутрикостный катетер в бедро. У первых контраст выделялся через воротную систему почек от их каудального полюса к краниальному и затем через заднюю полую вену. Во второй группе результаты варьировали, но во всех случаях контраст проходил по общей подвздошной вене, вентральной брюшной вене и позже в небольших количествах попадал в почку через анастомоз между подвздошной веной и воротной веной почки. У двух ящериц контраст попал в позвоночный синус и у одной – в противоположную подвздошную вену. То есть в данном случае большая часть контраста при инъекции в бедро минует почку и соответственно, препараты, инъецированные этим способом, не должны выводиться из циркуляции в количествах, нарушающих фармакокинетику.

Исторически сложилось, что при парентеральном введении препаратов рептилиям (особенно нефротоксичных) принято делать инъекции в переднюю половину тела, чтобы избежать их частичного пресистемного выделения почками и нефротоксического действия некоторых препаратов при увеличении их концентрации  в ВСП. Изучение ВСП у черепах (Holz, et al, 1997; Beck, et al, 1995) показало разницу в плазменных концентрациях некоторых препаратов при введении их в мускулатуру передних или задних конечностей. В одной из этих работ было выявлено существенное различие в концентрации цефазолина и карбенициллина, удаляемых путем канальцевой секреции, но не гентамицина, удаляемого путем клубочковой фильтрации. Несмотря на существенные сокращения уровней первых препаратов в плазме крови, авторы считают, что это не имеет большого клинического значения, так как концентрация препаратов в плазме все равно превосходит МИК. Препараты, фильтрующиеся в клубочке, не изменяют концентрацию возможно потому, что кровоток в ВСП обходит почечный клубочек, либо системный кровоток обходит ВСП по анастомозам с брюшной веной.

Понимание ВСП, конечно, очень упрощено, так как кровоток может изменять свое направление под воздействием многих факторов, прежде всего при изменении температуры тела и статуса гидратации. В целом, при возможности выбора лучше все же инъецировать препараты в переднюю половину тела.

Система брюшной вены

Вентральная брюшная вена (или вены) некоторыми авторами считается компонентом  ВСП.  Брюшные вены начинаются от дорзальной мускулатуры таза и получают с каждой стороны кровь от тазовых вен. У ящериц, водных черепах и некоторых змей эти вены сливаются по белой линии, образуя непарную брюшную вену, расположенную очень поверхностно. У черепах и крокодилов брюшные вены парные и соединены поперечной брюшной веной. Здесь кровь может течь в обоих направлениях. У ящериц и черепах перикардиальные вены обычно сливаются с брюшными венами. Место их слияния расположено сразу за грудными венами. Парные сосуды впадают в брюшные вены и от мочевого пузыря. Бедренные вены, происходящие от глубоких дорзальных мышц бедра, впадают в брюшные вены чуть каудальнее тазовых. Наружные подвздошные вены впадают в брюшные в точке или возле слияния бедренных вен. Парные липоидальные вены от левого и правого каудальных жировых тел впадают в брюшные недалеко от вен конечностей.

Уже давно при полостных операциях у ящериц выбирают парамедианный доступ, чтобы избежать крупной вентральной брюшной вены (ВБВ), проходящей по белой линии примерно в середине тела. ВБВ является продолжением двух подкишечных вен, тазовых вен и непарной лобковой вены и расположена непосредственно под брюшной мускулатурой. Она начинается под брюшной стенкой краниальнее лобка, сливаясь из венозных ветвей, идущих от более глубоких тканей. Дистанция от лонного симфиза варьирует, в зависимости от вида и размера пациента, но обычно это ¼ длины между лобком и пупком. Затем единый сосуд проходит под брюшной стенкой, где на уровне пупка поворачивает дорзально под углом 90° и сливается с печеночной веной. Исходя из этого, между краниальным полюсом лонного симфиза на ¼ расстояния до пупка и затем от пупка до рукоятки грудины под белой линией нет никаких сосудов. Поэтому для инициального разреза можно использовать эти области, а затем продолжать разделение тканей тупым способом. Брюшная вена подвешена на короткой брыжейке шириной от нескольких миллиметров до одного сантиметра у крупных видов, поэтому ее можно сдвинуть вбок от белой линии в любом направлении. Медианный доступ имеет свои преимущества: доступ равнозначен для парных органов, кроме того, он уменьшает постоперационную боль и дискомфорт, а также при этом не приходится пересекать мышцы брюшной стенки. При пересечении и лигировании брюшной вены кровь оттекает обратно через тазовые и почечные вены в заднюю полую вену. Поэтому выключение данного сосуда из кровотока не вызывает серьезных нарушений циркуляции (Wyneken, Mader, 2002). Мы редко используем доступ по белой линии, так как в этом случае швы находятся в постоянном контакте с грунтом. Однако, это удобный и быстрый доступ к брюшной вене для ее катетеризации и, как менее кровавый, оптимален для пациентов с возможной коагулопатией.

Физиология сердечной деятельности

Физиология сердечно-сосудистой системы рептилий имеет некоторые особенности. Во-первых, частота сердечных сокращений (ЧСС) у них обратно пропорциональна массе тела (как у всех позвоночных) и прямо пропорциональна температуре тела и окружающей среды (как у всех холоднокровных). ЧСС рептилий описывается аллометрической формулой 33,4М-0,25, т.е. у ящерицы массой 1 кг ЧСС должна составлять около 33 ударов/мин. На самом деле у игуан даже при температуре 24°С ЧСС обычно составляет не менее 40-70 ударов/мин (Bennett, Schumacher,  et al, 1998) и только у очень крупных ящериц она может быть меньше 30 ударов/мин.

Трехкамерное сердце рептилий «технически» позволяет регулировать распределение сердечного выброса между большим и малым кругом кровообращения с помощью интервентрикулярного шунта (преимущественной подачи потока крови в правый или левый желудочек). Особенно наглядно это проявляется у ныряющих видов. У человека, например, легочное сопротивление в норме остается низким по сравнению с сопротивлением большого круга, и поэтому давление во всех каналах, идущих к легким, ниже, чем в сосудах системного кровотока. При дефектах межжелудочковой перегородки кровь шунтируется вправо, и выброс правого желудочка становится выше выброса левого в 3-4 раза (в норме они равны). У ныряющих рептилий наблюдается похожая ситуация. Так, у красноухой черепахи, когда она сидит на суше, около 60% сердечного выброса отправляется в малый круг и 40% - в большой, т.е. наблюдается правый шунт. При нырянии сосудистое сопротивление в легких возрастает, давление в малом круге повышается, и кровь шунтируется в левое сердце и в большой круг. Нечто похожее наблюдается у человека при дефекте межжелудочковой перегородки с одновременным легочным стенозом (тетрада Фало), но только у рептилий шунты являются произвольными и, по-видимому, регулируются симпатической и парасимпатической системами.

Многие рептилии способны к периодической задержке дыхания, при этом левый шунт позволяет выключать циркуляцию в малом круге в состоянии апноэ, с преобладанием правого шунта в процессе самостоятельного дыхания. Выраженность и направление шунта зависит от уровня сердечной деятельности (ЧСС и ударного объема), сократимости миокарда, сосудистого сопротивления в большом и малом круге и, по-видимому, от тонуса симпатической и парасимпатической систем. Так, снижение ЧСС (физиологическая брадикардия) зависит от влияния вагуса и снимается при введении атропина, не изменяясь при этом при внутривенном введении пропанолола. Электрическая стимуляция волокон вагуса у красноухой черепахи вызывает брадикардию, купирующуюся дозой атропина. Это также вызывает повышение сосудистого сопротивления в легких у черепах, змей и ящериц. Оно также подвержено реверсии атропином. Следовательно, левый шунт находится под холинэргическим контролем.

Адренэргическая регуляция интервентрикулярного шунта также экспериментально доказана (Hicks, 1994). У черепах симпатические волокна иннервируют предсердие, и волокна, содержащие везикулы (что типично для адренэргических волокон) найдены в мышцах желудочка сердца. Стимуляция этих волокон вызывает увеличение ЧСС, при этом адреноблокатор бретилиум этот эффект снимает. Адренэргические волокна также были найдены в сосудистой системе легких у многих рептилий. Их роль несколько иная. У двух видов пресноводных черепах небольшие дозы адреналина вызывают вазодилатацию, а большие дозы – вазоконстрикцию. Вместе с тем, другие адреномеметики (норадреналин, изопреналин и фенилефрин) не оказывают эффекта на тонус легочных артерий. Эти реакции видоспецифичны, и у одних видов (змей) вызывают расширение легочных артерий, причем этот эффект снимается пропанололом, а у черепах такой эффект отсутствет. У полозов стимуляция вагуса вызывает вазоконстрикцию, которая после окончания воздействия сменяется вазодилатацией, купирующейся бретилиумом и пропанололом. Это подразумевает, что ток крови в легких регулируется реципрокными взаимодействиями адренэргических и холинэргических нервов. Аналогично, у красноухой черепахи электростимуляция афферентных волокон вагуса вызывает повышение ЧСС, снижает сопротивление в легких и повышает сопротивление в большом круге. Это приводит к усилению циркуляции в малом и снижению в большом круге (правый шунт). Инъекция адреналина вызывает похожие изменения, снимаемые бретилиумом, т.е. адренэргическая стимуляция может устранять левый шунт. Инфузия адреналина может вызывать правый шунт и устранять примешивание венозной крови в дугах аорты у красноухих черепах.  Итак, сила и направление шунта зависят от реципрокного взаимодействия холино- и адренорецепторов. Факторы, влияющие на сосудистый тонус легких также будут определять направление шунта. Например, блок холинэргического сужения сосудов легких атропином будет устранять левый шунт, возникающий при вагальной стимуляции. Адренэргическая блокада вызывает снижение правого шунта. Смысл правого шунта не совсем понятен, так как сильный правый шунт нарушает процесс окисления гемоглобина. Возможно, он необходим для удаления избытка СО2 после левого шунта (при смешивании артериальной и венозной крови), а также может исправлять нарушенный при апноэ транспорт кислорода к тканям.

Рептилии способны к анаэробному гликолизу, хотя это видоспецифично. Некоторые ящерицы могут выживать без кислорода не более 25 минут, а пресноводные черепахи – более 33 часов. Это зависит в первую очередь от толерантности миокарда к гипоксии. Игуаны выживают в бескислородной среде около 4,5 часов (Moberly, 1968). Вагальная стимуляция при нырянии, помимо левого шунта, вызывает резкое сужение сосудов в скелетной мускулатуре, у крокодилов, например, почти до уровня ишемии. При этом сердечный выброс уменьшается до 5% от нормы, и кровь направляется в основном к голове и главным висцеральным органам.  Это позволяет рептилиям поддерживать только жизненно важные функции, в отличие от ныряющих птиц и млекопитающих. При нормальной респирации уровень сердечной деятельности мгновенно восстанавливается, причем у некоторых видов сначала отмечается преждевременное увеличение ЧСС перед всплыванием. Способность гемоглобина крови связывать кислород видоспецифична. У змей эта способность уменьшается с возрастом и при увеличении размеров тела, у ящериц – наоборот. Способность гемоглобина к отдаче кислорода также отличается: у водных черепах она выше, чем у сухопутных, а у змей – наоборот. У последних это связано, скорее всего, с эффектом Бора: при левом шунте замедляется восстановление гемоглобина, как бы сохраняя его «про запас» на время ныряния.



Реклама